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SEQUENTIAL PROCEDURES FOR A CLASS OF DISTRIBUTIONS
RELATED TO THE UNIFORM
By

P.J. Cooke and M.K. Vagholkar

1. INTRODUCTION

Suppose xl,x peee are independent random variables, each with
cumulative distribution function F(i) and density f(x). Let
Y - max (X, ,X seeesk ), m=1,2,... and define a stopping rule N
by

(1) N = first integer n > 1 for which Y ¢ (b ,a) ,

vhere {an} and '{pn} are sequences of real numbers and typically non-
decreasing since {Yn} is stochastically increasing with n. Then,

for a>2

POPn) = P(b <Y <a;,.00b (<Y <& ) ,b <Y <a)

-P(bi<Y1<a1,i-l,2,...,n-l)?(bn<Yn<ln|b1<Y1<ai.1-1,2,...,n-l)

=P(W>n-1)P(b <Y <a |b _ <Y ,<a ,) since the sequence {Y } 1s

Markov. Thus induction gives




a

For b,>a, ,, P(b,<¥,<a,|b, <Y, ,<a, |) = P(b,<X,<a,)

-F(ai)-F(bi). though typically b, < a, , for each i>1.

Henceforth we will make this assumption, in which case
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and, for 1> 2,

P(b, <V <a b, <Y, ,<a, ;)
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Thus, since PN > 1) = F(a;)-F(b;) , for n>2

¢

(2) 1-1, 1-1
n FPoh)-F O, )
POPn) = [FGa)-Fo] TT | PA)-FO) | 57 = I

Suppose we consider procedures truncated at some integer M,
eay, in wvhich case " bll (This possible violation of our
assumption for the pair 'u—l’bx does not effect any of our




P %

calculations.) We can nov find expressions for any of the moments
of N using (2). In particular, 1

M-1 :
E(N) = Z PO n) = 1 + F(a)-F(b))
=0 %
(3) 5
1-1 i-1
M-1 n F" (b,)-F “(b,_,)
+[FGa)-Fo)I ) TT | Fa)-r0) [—3 : T, : :

Suppose further that F depends on a single unknown parameter 0
(and hence we attach a subscript 0 to F) and that nu is a
hypothesis about the value of 0 to be tested using a sequential
procedure with stopping rule of the form (1) and with decision
rule

(4) reject if v > ,» accept H i1f Y _<b, .
n-% 0

For such a procedure, for n > 2,

Pg(N=n,reject By = Po(by<¥y<aj,ece,by <V j<a 1Y 2a)




Hence, using (2), the procedure has power function

M
g(o) = Pe(teject Ho) - ngl Pe(N-n,reject Bo)

;
|
!
{
iﬂ.
i
|
i

= 1-Fg(a,) + [Fe(al)-l‘e(bl)][ 1-Fg(a,)]

(5) M
+[Fgla)-Fob)1  } [1-Fg(a))] . {
n=3
1-1 1-1
n-1 Fo (b )-Fa (b, )
TT 3 Flaprop |—y—L—2oid .
1=2 Fg (a_))-Fg O, )

If the decisions to reject and accept no are reversed in (4),
then of course the power function is one minus the expression in

(5). The expected sample size, which we.now denote by Ee(N),

is given by (3) with F replaced by Fe. Bquations (3) and (5)
bold with M = » for untruncated procedures.

Suppose now that the density corresponding to Fe(x) is fe(x) ,
vhere fe(x) = c(0)g(x) for x ¢ (0,0) and fe(x) = 0 otherwise and
g(x) 1s a known function. This includes the case in which fe(x) is
a specified density g(x) truncated at the unknown point x = 0. If

x
G(x) = I g(u)du, then c(8) = 1/G(0).
10
For the class of distributions {fe(x), e > 0}, Yn = nax(xl .xz....,xn)

is sufficient for 6 for a fixed sample size procedure with sample size
n and hence by Pay's lemms (see, for example, Lehmann (1949)), Yy and N

are jointly sufficient for 6 for a sequential procedure based on the
stopping rule N defined in (1). Without loss of generality we will
restrict the discussion henceforth to the Uniform distribution on (0,6)

since, 1f X has density fp(x), then the random varisble O(X) hes
the Unifora density on (0,G(6)).




2. OPTIMAL PROCEDURES

We will restrict the discussion to follow to tests of a hypothesis
of the form Hy: 0 <6, gdmt the alternative H: 6> 96, vhere
Oo is a specified eotgstanﬁ. It is well known (see, for example, Lehmann
(1959)) that for random samples of fixed size n from the Uniform
d:lstx:lbgtion on (0,8), every size O test based on Y, is uniformly
most poﬁerml for testing Ho against Hl. The procedure which minimizes
ti:_e power ﬁmétion uniformly for 6 < eo is fhe one with critical region

Y B, fhis procedure has power function B(9) = 1-(1-a)(eo/e »

.2 .eo(l-a) ,
1/n

for 6> eo(l-a) and B(6) =0 if 6 < eo(l-a)lln. The sample size

required for B(@)) = 1-B for some specified 6, >0, and B € (0,1) is
n(@,8) = 1og (53)/10g(s)
’ LB %

To avoid some algebraic camplications in the discussion to follow we will
1g§|ore the fact that n(@,p) is not usually an integer.

The question of vhether or not we can improve on the best fixed
sample size procedure through a sequential sampling plan now arises.
Thus we seek a sequential test with size @ and power function equal to
3 at 0 =0, and vith expected sample size not larger than n(a,'é) for

any 6 and smaller than n(a,8) for some 6. The first procedure to
come to mind is the s.equential Probability Ratio Test (SPRT) of Hy: ©=6,
versus H: 0«6, with error probebilities (3,8). However, the likeli-
hood ratio is constant for x < 6,> %0 that the SPRT procedure reduces

e




to: reject }lo as Soon as you observe an xi greater than or equal to

6> othervise accept H, after log (F)/1°8(_) observations. Thus
the SPRT necessarily has size a =0. Its optimality property is preserved;
that is, among all test.s vith size a = 6, the expected sample size is

" minimized at both 0 = 60 a.nd @ = 91- Clearly, the expected sample size
equals n(0,8) for 6 <6, but is smaller t.han n(O,ﬁ) for 6 > 65°. ' ’
Tests with size zero are of limited interest and what we seek are sequential |
tests, with size @ > 0, wvhich are better than the corresponding fixed
sample .s:lze procedure and vhich are in some sense optimal.

Samuel-Cehn (197%4) has considered truncated sequential procedures based

on a single sequence. [a ] with a, ga.é L e <8, <6, Thus the ‘stopping i
a.nd decision rules are as in (1) and (4), respectively, except that
b, =)

1 2
no more than M observations and accept_ Ho if and only if the boundary is

= ese Bb

M- 1 = O and b" aye ﬂhe procedure is therefore to take

not reached. From (3) and (5),. expressions for the expected sample size and

power function of such a procedure reduce to the following:

M-l n a

(n)=1+z.n -i) 0>0

a n=l 1= (e o =vo
M a

ﬂ(e)wl-il_ll(-;-) ) 026, -

' M
It follovs that if Blog) =@ and B(9) =18, then T o - (1a)ey ,

1.0 01 o .O n
¥ = n@,p) = m(—r)llos(%-) amd B(0) = 1-(1a)(57) for 6> 8.
Thus the truncation point equals the mmber of observations required by




the best fixed sample size procedure and the power functions coincide for
8 > 8,

Samuel-Cahn has proved thgt the procechn:e with boundary a = (;L.a)eo,
8y=85=--= 8,=0, 18 optims) in the sense that E,(N) is minimized
uniformly for 6 > 96. Thus a, takes care of the requirement that the
size is @ > 0 and after that the procedure is of the same form as the
SPRT. Indee&, when Q@ = 0 they are the same. However, despite the proven
-.o'ptimality of the above procedure, the heavy emphasis oﬁ xl might make a
poten?;ial user of the scheme somevwhat wary of it. Thus in section 3
v:; consider a broader class of s.topping rules. Before doing so,
sﬁppose we attempt to formulate the fixed width confidence interval problem
in terms of a stopping rule of the forn_: used by Samuel-Cahn for the hypothesis
| testing problem. We see immediately that no maiter how the ai's are chosen,
Pa(Naeo) >0 for some values of 6. Truncation seems the obvious next step,
dbut with no knowledge of 6 it is impossible to determine a truncation value.
The only case in which this problem can be solved with a Samuel-Cahn type
stopping rule is when | 6 is known to be smaller than some constant 6,2 54y,
in which case we can determine a truncation value M (depending on 90 of
course). For purposes of illustration, and indeed without loss of generality,
suppose we consider the unit length confidence interval (YN’ T ). We find




kX n-l M-k k
(6) .1-%-%2 ) %-[1-(1-%‘ B 39.",
n=2 i=) i=1

ak+l<95_ak+l+l ? k=1,2,...,M-l ry

fhere the sum is to be teken az zero for k = 1.

From (6), gj.ven that we will not consider any boundary points larger
than 90-1, we find that 1'—‘9(Ylt <6-1)<a for all @ < 6 :lf- and only
ir a =a,=--- =au=eo-l and M = log ®/log(l - -e%), the sample size
required by the best fixed sample size procedure. Also,

M, 9.5_ 651
E,(¥) = |

-1<6<6, .

o(a)-1 , o

%

T.hug the above formulation leads to a procedure vhich is a slim
improvement over the best fixed sample ~si.ze procedure since all it does
1s take care of the obvious defect of that procedure in that if you
observe an xi > 90-1 you.mi.ght as well stoj samplingAsince you novw have
an intervel vhich contains 6 with probability one.

3. THE TWO BOUNDARY APPROACH

The question now is whether Or not we can improve on the above

optimal solution, in the sense of reducing the average sample size, by using

i
1
!
|
1
;
i




a stopping rule of the form (1) and a decision rule of the form (4) with at

least one of bl’b2"" ,bM 1 nonzero. If we require the power function to
satisfy B(eo) =0 and B(el) = 1-B, the truncation point must again be

M = n(a,B) since, if the procedure is tr\mc;\.ted at some M and if the
accepta.ncé region for }{o is A, then A 1is a subset of the M~-dimensional

cube vith sides of length 6, and P, (Y, €.A) = vol(.t\)/e:)'I =10, Also,
) o

for 0 >0y, B (Y, € A)'= Vo (a)/6" = (1a)(o /e, 5o that
B(o) = 1-(14)(90/9)" for 6 >6,- Hence PB(e;) = 1-B implies
M= n(@,B).

It 1s not difficult to see that, as in the fixed sample size problem,
.ot only do all size a tests have the same power function for 6 > Y
but the power function is uniformly minimized by choosing the critical
region as far as possible from the origin. By the theorem which follows

this paragraph, this amounts to choosing 8y s8s5c 008y such that
M

11:1 a8 = (1-a)eo, in vhich case bl be,...,b are all necessarily

zero. It is not our main concern here to discuss in detail the procedure

shich uniformly minimizes PB(9) for o < 90, though we easily find that

the procedure 1s the one with b, =b2 = ese =bM-1 =0 and

o =y e may = g (1)

procedure is zero for 6 <a, and, in view of the lemna and since

since the power function for every

a < < 32 <eee < an, the largest possible value of ey is 60(141)1/ M

" Theorem:- For every sequential test of no. 6 < 90 against H,: 6 > 0

1° 0
based on a stopping rule of the form (1) and a aecision rule of the form
(d) and with power function P(6) satisfying both B(gp) =@ anmd B(el) = 1-f
for some @ ¢ (0,1) and P ¢ (0,1),




(1) :I( < (1-:::)9M
g 3= 0’

M : : .
= M —J t—] L LK 2 - —3
(1) I 8y = (1-0:)9o if and only if b) = b, = =by,=0.

i=1

Proof: {x1<a1, 1c2<a2,...,xu<§4)¢>[Yl<a1, Y2<a2,.,,,YM<aM} >
(accept Hol .
M ai
Thus P, (X, <&),X,<8,,...,X,<ay) =.1]=I=1 (?) <1-8(e) and (i) follows
by putting o6 = GO.

From (5) with Fa(x) = x/o we have

_ - R . _ _ 3-1 .i-1
. .8 (a-d))(6-a)) (e;-b) M (6-a ) n-1 b T-b T
Ple) =1-F+ —=—m—+ 5= I —TT (a0 55—
: 6 n=3 6 i=2 ai-l-bi-l
and, .If we define a, = 1, bo =0 and bg = 0 and arrange the terms in

increasing powers of 1/6 we have

p=2 en n-1 - bn- i=1

b, M b [v*1ouB1) na pi-1 _pi-t
h . n n n-=1 i i-1
b(e)al-—a- £ — |=3—mr| I a b | T5—i7
8n-1 " "n-1

)

~ M 8, I L i-1

§1 i
o M1 o 1P Ba|l
Mg Y21 b

&-1""1

' M
It 1s now easy to see that if b, = b, .=----bu_1 = 0, then 11:1 a, = (1-a)g,
since b(eo) =Qa,

10




- On the other hand, suppose at least one of bl’be”"’bu-l is strictly
positive. Then, for ¢ > 60, the power function of the procedure is smaller
than the power function of a procedure with the same upper bounda.ry,-but

with each point in the lower boundary equal to zero. That is, from (7)

M
5(o)<1-—1ﬁ T a for 6>¢,.
6 1=l

Thus, if N & = (l-a)eg, then 5(90) <a. This contradicts the assumption
) i=1

. s M

that ﬁ'(eo) =0 and hence, from (i), I 8 < (La )eg. The proof is now

i=1
complete.

We. can now prove that it is not possible to have a nonzero lower boundary

for the problem considered here. '. If we let

ey
P mT x| 2 B LReeMl,
-1~ Ppy
n-l

di.a b and & =c. ;it,l,(a.i-ci),. n= ?,5,.J.,M-1, using (7) we can write

M ay M M-1 M-1 (g

- : =1 = -n i

8). B(e) =1 - & (=) X r ad™@+rm -1y .

@) - 11 O fiq ¥ n:ldn 12 %

. .u u
It 11:1 51-_(1-0)60, the lemma implies that by =by =0 =D, ='=o.

M. ' M M M
Also from the lemma, if X a, # (1-0)90, then U a < (1), in
y . 3l O fal

M .
vhich case '11’1-1 ‘1 - ).(1-0)0: for some )\ € (0,1). But then

11




LI B0 X
n (5-)=1(1-a)(5-) =2 since M= 1og( )llog( ) Thus, from
i=1 "1 1

(8), since B(9,) =& and B(o,) = 1B, we mst have

M, M M-1 e, M M-l Mo M-1 ey
i/A= 1 &, = aeo + T l-—=)= I a;” I dg," + I (1---)
3=1 n=l 1=1 &% 4t neg 1=1 8y
ML ML . .
or £ 46, = £ 46, . But 6, and 6, are distinct and 4 >0
n=1l n=1

for each n, vhere 1 <n<M-1 andbence 4 =0 for n=1,2,...,M-1
which impliesv that bl = b2 = eee = bM—l = 0.
It follows that we cannot improve on the optimal single boundary procedure;
that is; stating the result for the class of distributions with densities
£y (x) = c(e)g(x), 0 < x < 6, the stopping rule of the form (1) which

und formly minimizes the average sample size for € > 6, is the one for

= 0.

Y .
_ﬂ]ich al = Feo(l-a), 02 = .5 -...nau = Go and bl - b2 =-.-=bn-l
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